Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws
نویسندگان
چکیده
We develop a high order finite difference numerical boundary condition for solving hyperbolic conservation laws on a Cartesian mesh. The challenge results from the wide stencil of the interior high order scheme and the fact that the boundary intersects the grids in an arbitrary fashion. Our method is based on an inverse Lax-Wendroff procedure for the inflow boundary conditions. We repeatedly use the partial differential equation to write the normal derivatives to the inflow boundary in terms of the time derivatives and the tangential derivatives. With these normal derivatives, we can then impose accurate values of ghost points near the boundary by a Taylor expansion. At outflow boundaries, we use Lagrange extrapolation or least squares extrapolation if the solution is smooth, or a weighted essentially non-oscillatory (WENO) type extrapolation if a shock is close to the boundary. Extensive numerical examples are provided to illustrate that our method is high order accurate and has good performance when applied to one and two dimensional scalar or system cases with the physical boundary not aligned with the grids and with various boundary conditions including the solid wall boundary condition. AMS subject classification: 65M06
منابع مشابه
An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models
In this paper we present a new algorithm based on a Cartesian mesh for the numerical approximation of kinetic models on complex geometry boundary. Due to the high dimensional property, numerical algorithms based on unstructured meshes for a complex geometry are not appropriate. Here we propose to develop an inverse Lax-Wendroff procedure, which was recently introduced for conservation laws [21]...
متن کاملEfficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws
In [18], two of the authors developed a high order accurate numerical boundary condition procedure for hyperbolic conservation laws on a Cartesian mesh, which allows the computation using high order finite difference schemes on Cartesian meshes to solve problems in arbitrary physical domains whose boundaries do not coincide with grid lines. This procedure is based on the so-called inverse Lax-W...
متن کاملInverse Lax-Wendroff procedure for numerical boundary treatment of hyperbolic equations
Abstract We discuss a high order accurate numerical boundary condition for solving hyperbolic conservation laws on fixed Cartesian grids, while the physical domain can be arbitrarily shaped and moving. Compared with body-fitted meshes, the biggest advantage of Cartesian grids is that the grid generation is trivial. The challenge is however that the physical boundary does not usually coincide wi...
متن کاملA strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws
ADER schemes are numerical methods, which can reach an arbitrary order of accuracy in both space and time. They are based on a reconstruction procedure and the solution of generalized Riemann problems. However, for general boundary conditions, in particular of Dirichlet type, a lack of accuracy might occur if a suitable treatment of boundaries conditions is not properly carried out. In this wor...
متن کاملStability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes
In this paper, we consider linear stability issues for one-dimensional hyperbolic conservation laws using a class of conservative high order upwind-biased finite difference schemes, which is a prototype for the weighted essentially non-oscillatory (WENO) schemes, for initial-boundary value problems (IBVP). The inflow boundary is treated by the so-called inverse Lax-Wendroff (ILW) or simplified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010